Perturbations to the active site of phosphotriesterase.

نویسندگان

  • J M Kuo
  • M Y Chae
  • F M Raushel
چکیده

Phosphotriesterase catalyzes the hydrolysis of organophosphate nerve agents. Four amino acid residues, located within the active site pocket, were mutated in an effort to ascertain the roles that these groups play in the structure and function of this enzyme. Tryptophan-131 is located at the entrance to the binuclear metal center, and the indole ring is positioned to suggest that it could provide a hydrophobic site for interaction of the aromatic leaving group with optimized substrates. The W131F mutant displays catalytic constants for the hydrolysis of paraoxon that are essentially the same as those of the wild type enzyme. However, the Km value for the W131A mutant is elevated by a factor of 6, consistent with a role for this residue in substrate binding. Aspartate-253 is hydrogen bonded to His-230 which, in turn, is directly ligated to the more solvent-exposed metal ion. The D253N mutant possesses catalytic constants that are virtually the same as those of the wild type enzyme, while the D253A mutant is reduced in activity by 500-fold. These results are consistent with a model where this residue is required to orientate the imidazole side chain of His-230 for proper interaction with the binuclear metal center. Aspartate-301 is a primary ligand to the more buried metal ion. Mutation of this residue to histidine, asparagine, alanine, and cysteine reduces the catalytic activity by factors of 2.6 x 10(4), 2.7 x 10(3), 5.6 x 10(2), and 1.5 x 10(2), respectively. These results indicate that alterations to the direct metal ligands, even with residues that can strongly coordinate divalent cations, cause a severe disruption to the proper functioning of the active site. In the wild type enzyme, the side chain of Lys-169 is carbamylated and also acts as a bridge between the two divalent cations. Significant losses in catalytic activity are obtained upon mutation of this residue to either alanine, glutamate, arginine, or methionine. The loss in activity can partially be restored upon inclusion in the assay mixture of short-chain carboxylic acids. A 25-fold enhancement in k(cat) is observed for the K169A mutant in the presence of 100 mM propionic acid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereochemical preferences for chiral substrates by the bacterial phosphotriesterase.

The bacterial phosphotriesterase from Pseudomonas diminuta catalyzes the hydrolysis of organophosphate nerve agents such as paraoxon (diethyl p-nitrophenyl phosphate) with a turnover number of approximately 10(4) s(-1). The active site of the enzyme has been shown to be composed of a binuclear Zn2+ complex with a bridging hydroxide. The utilization of chiral phosphotriesters has demonstrated th...

متن کامل

Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a "hot spot" in the active site by saturation mutagenesis as well as X-ray crystallo...

متن کامل

Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library.

An array of 16 enantiomeric pairs of chiral phosphate, phosphonate, and phosphinate esters was used to establish the breadth of the stereoselective discrimination inherent within the bacterial phosphotriesterase and 15 mutant enzymes. For each substrate, the leaving group was 4-hydroxyacetophenone while the other two groups attached to the phosphorus core consisted of an asymmetric mixture of m...

متن کامل

Differential Active Site Loop Conformations Mediate Promiscuous Activities in the Lactonase SsoPox

Enzymes are proficient catalysts that enable fast rates of Michaelis-complex formation, the chemical step and products release. These different steps may require different conformational states of the active site that have distinct binding properties. Moreover, the conformational flexibility of the active site mediates alternative, promiscuous functions. Here we focused on the lactonase SsoPox ...

متن کامل

Stereochemical constraints on the substrate specificity of phosphotriesterase.

A series of achiral, chiral, and racemic mixtures of paraoxon analogues containing various combinations of methyl, ethyl, isopropyl, or phenyl substituents were synthesized as probes of the stereochemical constraints within the active site of phosphotriesterase. The kinetic constants for these paraoxon analogues with the enzyme varied significantly with the size of substituents surrounding the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 36 8  شماره 

صفحات  -

تاریخ انتشار 1997